Major Novel QTL for Resistance to Cassava Bacterial Blight Identified through a Multi-Environmental Analysis
نویسندگان
چکیده
Cassava, Manihot esculenta Crantz, has been positioned as one of the most promising crops world-wide representing the staple security for more than one billion people mainly in poor countries. Cassava production is constantly threatened by several diseases, including cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam), it is the most destructive disease causing heavy yield losses. Here, we report the detection and localization on the genetic map of cassava QTL (Quantitative Trait Loci) conferring resistance to CBB. An F1 mapping population of 117 full sibs was tested for resistance to two Xam strains (Xam318 and Xam681) at two locations in Colombia: La Vega, Cundinamarca and Arauca. The evaluation was conducted in rainy and dry seasons and additional tests were carried out under controlled greenhouse conditions. The phenotypic evaluation of the response to Xam revealed continuous variation. Based on composite interval mapping analysis, 5 strain-specific QTL for resistance to Xam explaining between 15.8 and 22.1% of phenotypic variance, were detected and localized on a high resolution SNP-based genetic map of cassava. Four of them show stability among the two evaluated seasons. Genotype by environment analysis detected three QTL by environment interactions and the broad sense heritability for Xam318 and Xam681 were 20 and 53%, respectively. DNA sequence analysis of the QTL intervals revealed 29 candidate defense-related genes (CDRGs), and two of them contain domains related to plant immunity proteins, such as NB-ARC-LRR and WRKY.
منابع مشابه
Resistance Gene Analog Polymorphism (RGAP) Markers Co-Localize with the Major QTL of Fusarium Head Blight (FHB) Resistance, Qfhs.ndsu-3BS in Wheat
Resistance gene analog polymorphism (RGAP) markers linked to Fusarium head blight resistance (FHB) and co-localize with Qfhs.ndsu-3BS were identified using F3 plants and F3:5 lines derived from a ‘Wangshuibai’ (resistant) / ‘Seri82’ (susceptible) cross. The mapping populations were genotyped using 50 degenerate primers designed based on the known R genes. Out of the 50 designed primer combinati...
متن کاملTwo Cassava Basic Leucine Zipper (bZIP) Transcription Factors (MebZIP3 and MebZIP5) Confer Disease Resistance against Cassava Bacterial Blight
Basic domain-leucine zipper (bZIP) transcription factor, one type of conserved gene family, plays an important role in plant development and stress responses. Although 77 MebZIPs have been genome-wide identified in cassava, their in vivo roles remain unknown. In this study, we analyzed the expression pattern and the function of two MebZIPs (MebZIP3 and MebZIP5) in response to pathogen infection...
متن کاملMapping and Expression Analysis of a Fusarium Head Blight Resistance Gene Candidate Pleiotropic Drug Resistance 5 (PDR5) in Wheat
Fusarium head blight (FHB) caused by Fusarium graminearum is a serious disease of wheat (Triticum aestivum L.), through which grain quality losses are induced by fungal trichotecene mycotoxins such as deoxynivalenol (DON). A class of plasma membrane localized ABC transporter proteins related to the yeast PDR5 (pleiotropic drug resistance5) efflux pump seems to be responsible for partial resista...
متن کاملAFLP assessment of genetic variability in cassava accessions (Manihot esculenta) resistant and susceptible to the cassava bacterial blight (CBB).
Cassava bacterial blight (CBB) is caused by Xanthomonas axonopodis pv. manihotis (Xam). Resistance is found in Manihot esculenta and, in addition, has been introgressed from a wild relative, M. glaziovii. The resistance is thought to be polygenic and additively inherited. Ninety-three varieties of M. esculenta (Crantz) were assessed by AFLPs for genetic diversity and for resistance to CBB. AFLP...
متن کاملBroadening Gene Pool of Rice for Resistance to Biotic Stresses Through Wide Hybridization
Variability in the cultivated germplasm for economic traits such as resistance to rice tungro virus, sheathblight, yellow stem borer, drought and salt tolerance is limited. This necessitated search for the genes in secondary and tertiary gene pool of genus Oryza. Fortunately, wild species are an important reservoir ofuseful genes for resistance to major disease, pest and tolerance t...
متن کامل